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a b s t r a c t

In recent decades, the task of graph-based multi-view learning has become a fundamental research
problem, which could integrate data from multiple sources to improve performance. The dynamic
networks could be treated as one kind of multi-view network, but it is continually evolving and
leads to entirely different observations at multiple epochs. In this paper, we treat these observations
as multiple views and seek a semi-supervised multi-view approach to address the classification
problem. Therefore, we propose Multi-view Semi-supervised learning for Classification on Dynamic
networks (MSCD). With the aid of total variation regularization, MSCD can obtain a sparse and smooth
combination of the views and a better classification result. From the theoretical point of view, the MSCD
model is decomposed into simpler sub-problems, which can be effectively solved under the Alternating
Direction Method of Multipliers (ADMM) framework. Extensive experiments on both synthetic and
real-world datasets show that our model can outperform the state-of-the-art approaches.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Graph-based learning is a fundamental research field of ma-
chine learning, which leverages structural information to improve
the performance of learning tasks. In graph-based learning, the
instances are taken as nodes of a graph, and the edges are gen-
erally calculated as the similarity among instances. For example,
in social networks, users are represented as nodes, and relation-
ships among users such as shared interests and common friends
are represented as edges. One of the advantages of graph-based
learning is that structural information could be used to boost
the learning process. To utilize this, Semi-Supervised Learning
(SSL) [1–5] has been highly developed in graph-based learning,
which integrates labeled and unlabeled data together to achieve
some learning tasks, such as classification and community de-
tection. The key idea of SSL is so-called manifold assumption, in
which nodes connected by edges with a large weight on the
graph are required to have similar labels. One of the fundamen-
tal research of graph-based learning is spectral clustering [6],
which addressed graph cut problems and introduced correspond-
ing vector–matrix form objectives. Inspired by spectral clustering,
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many improvements [7–9] have been developed in various disci-
plines [10–12], due to their flexibility, easiness of implementation
and excellent efficiency regarding both computational storage
and cost.

To reduce the effect of misleading information, it is meaningful
to integrate data from multiple sources, which is called views as
well. For example, the relationship of social networks’ users could
be constructed based on different social platforms, and properly
integrating them could improve the performance of classification
tasks among users. In other words, the data from multiple sources
can be integrated to identify groups of objects in a more reliable
manner. To achieve this goal, multi-view learning [13] was in-
corporated into graph-based SSL. By treating input networks as
views, the multi-view graph-based SSL seeks to combine all the
views, to improve the classification performance. According to
the significance of each view, we can differentiate the critical or
irrelevant views, which is called view selection. During this com-
bination, the algorithm could discard noisy data and adequately
combine the partial information of different views to complement
each other. Many practical applications [14–18] have proved that
multi-view learning could effectively improve the performance of
graph-based unsupervised and SSL tasks.

In a dynamic scenario, the internal relationships of networks
are continually evolving. For example, interactions happen all the
time on social platforms, and the properties of affected users
might change as well. By observing one dynamic network at
different epochs, we would obtain a series of network snapshots,
which are so-called time-varying networks (Fig. 1). Moreover,

https://doi.org/10.1016/j.knosys.2020.105698
0950-7051/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.knosys.2020.105698
http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2020.105698&domain=pdf
https://doi.org/10.1016/j.knosys.2020.105698
https://doi.org/10.1016/j.knosys.2020.105698
mailto:zhzibin@mail.sysu.edu.cn
https://doi.org/10.1016/j.knosys.2020.105698


2 C. Chen, Y. Li, H. Qian et al. / Knowledge-Based Systems 195 (2020) 105698

Fig. 1. Time-varying networks observed from an underlying dynamic network.

we can obtain time-varying networks from any evolving system.
Some of them evolve rapidly (like computer networks), and the
observation at any epoch may involve random noise and mis-
leading information, which implies that it is crucial to obtain a
complementary combination of multiple observations. By treating
each observation as one view, this problem becomes a multi-view
learning problem. However, the existing multi-view approaches
neglect the smoothness of the dynamic networks [14,15], i.e., the
views corresponding to consecutive epochs can be interpreted to
interact actively and consistently. On the other hand, the label
rate is an essential prerequisite for semi-supervised learning.
In extreme cases with few labeled training data, many existing
approaches may degrade or fail to classify nodes.

Intuitively, we propose a transductive graph-based SSL ap-
proach to address classification on dynamic networks, i.e., Multi-
view learning Classification for Dynamic Networks (MSCD). To
classify the instances of a dynamic network, given a series of
observations (views) sorted in temporal order, MSCD could find
an optimal combination of views to achieve the task. To utilize
the temporal information, we introduce total variation regulariza-
tion [19,20], which encourages the weight of views to be locally
consistent. This constraint fits well with our assumption that in-
formation gaps between any adjacent epochs are generally small.
Noteworthy, with the aid of total variation regularization, this
approach could effectively handle the scenarios with a limited
amount of labels.

In the optimization part, MSCD is theoretically decomposed
into two sub-problems, i.e., one network-weighting sub-problem
and one node label indicator sub-problem, both of which can
be analytically solved. The label indicator can be obtained by
solving a linear sub-problem, and the network weights can be
determined by aggregating the contribution of each network in
the node label indicator sub-problem, both of which can be effi-
ciently solved under alternating direction method of multipliers
(ADMM) framework [21,22]. We should note that even though
the network weights are required to be locally smooth under total
variation regularization, it can also be globally sparse according to
their degrees of contribution in the transfer of dynamic network
knowledge.

The rest of this paper is organized as follows. In Section 2, we
provide a brief review of the related work. In Section 3, we give
some symbol definitions and present the proposed model and al-
gorithm for MSCD. In Section 4, experimental results for synthetic
and real-world datasets are given to demonstrate the superior
performance of the proposed method to the other conventional
methods. Finally, some concluding remarks are given in Section 5.

2. Related works

In this section, we will review several related works, and
point out the main difference between our work compared to the
related ones.

In multi-view learning, many methods assume that the in-
formation collected in different views are for the same set of
instances, and all views share one label prediction. In the unsu-
pervised setting, Kumar et al. [23] proposed to use the idea of
co-regularized for multi-view spectral clustering and proposed
the idea of co-training in [8]. These works aimed to optimize
the clustering structure on each view, which can be naturally
combined with the label indicator of spectral clustering. Lihi
et al. [9] proposed a self-tuning spectral clustering method, which
can infer the number of groups automatically. Zhao et al. [24]
introduced a clustering algorithm based on matrix factorization.
Tao et al. [25] employed the low-rank sparse decomposition to
consider the similarity between different views explicitly and de-
tected the noises in each view at the same time. Auto-weighted is
also an effective method to solve multi-view clustering problems
by allocating ideal weight for each view automatically [26–28].
Wang et al. [17] explored the impact of different graph metrics
on the multi-view clustering performance. Yi et al. [18] tackled
the multi-task multi-view clustering problems in heterogeneous
situations. They proposed an approach to transform the sam-
ple space onto multi-view space, then on multi-task space for
clustering. Zhou et al. [29] modeled the dynamic community
detection tasks [30,31] as multi-objective problems, and proposed
a discrete bat algorithm to capture the structural information of
graphs. Graph data is often unbalanced, so in recent studies, there
are methods [32] focusing on data enhancement and generation.

In the semi-supervised [1] setting, Muslea et al. [33] further
combined active learning in co-training progress and proposed
robust semi-supervised learning. Zhu et al. proposed a graph-
based semi-supervised learning [34], which is fundamental re-
search about the label propagation algorithm. Chen et al. [16]
considered that the sets of instances in views might be dif-
ferent, and proposed a multi-domain semi-supervised classifi-
cation approach to address this situation. Muslea et al. [35]
combined active learning and semi-supervised classification, pro-
posed a robust multi-view learning approach. Besides, Kara-
suyama et al. [14] proposed a sparse multi-view learning ap-
proach, and Wang et al. [15] combined multiple views in a unified
model to address video annotation problem. Xiao et al. [36]
utilized the graph inference to seek the relationship between
miRNA data and diseases. Ibrahim et al. [37] presented a method
for link prediction in dynamic networks by integrating temporal
information, community structure, and node centrality in the
network. Lei et al. [38] built weighted dynamic PPI (protein–
protein interaction) networks and predict the protein complex
with a moth–flame optimization-based algorithm. Jing et al. [39]
studied the attribute reduction problem on dynamic networks.
Huang et al. [40] concentrated on information fusing of multi-
source interval-valued data with the dynamic updating of data
sources.

Compared with the related works, our work pays more at-
tention to dynamic networks, and the nodes classification task
on them. By utilizing the continuity of time slices, both views
weighting and nodes classification are well studied in a uni-
fied model. In the next section, we will introduce the proposed
approach in detail.

3. Method

3.1. Preliminary

We are given a limited number of labeled instances to classify
the rest. The connectivity among n instances of tth view is repre-
sented by the affinity matrix W(t), where (i, j)-element W (t)

ij is the
similarity between instances xi and xj. We should note that proper
similarity measurements such as Gaussian kernel and vector inner
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product are all accepted to calculate the affinity matrix, and the
selection depends more on the characteristic of the dataset, so we
omit the discussion of measurements in our model. The known
labels are stored in an n × c membership matrix Y(t), where c is
number of classes. Without loss of generality, we suppose that
the first ℓ instances are labeled, therefore, Y (t)

ij = 1 if i ≤ ℓ and
xi belongs to class j. Otherwise, Y (t)

ij = 0. In our problem settings,
the label rate should be extremely low, that is ℓ ≪ n.

Firstly, we consider the single-view SSL classification model.
The label propagation algorithm [41] estimates the labels based
on the smoothness assumption on the networks, which assumes
that instances share a label if they are close to each other. Con-
cretely, on binary classification problem, the algorithm estimates
the label indicators {fi}ni=1 on tth view by solving the following
regularized least squares problem:

min
f

n∑
i,j

W (t)
ij (

fi√
D(t)
ii

−
fj√
D(t)
jj

)2 + α

n∑
i=1

(yi − fi)2, (1)

where (D)(t)ii =
∑n

j=1 W
(t)
ij , and α is a trade-off parameter. This

objective constrains the smoothness of label predictions on the
graph, and leverages the semi-supervised knowledge. Under the
multiple classes settings, we rewrite the above problem as:

min
F

Tr(F⊺L(t)F) + α∥F − Y∥
2
fro, (2)

where F ∈ Rn×c is the label indicator, and the normalized
Laplacian matrix L is defined by L = I − (D(t))−1/2W(t)(D(t))−1/2.
Based on this symbols definition, we raise our model in next
sub-section.

3.2. Model statement

In many real-life scenarios, we are confronted with dynamic
networks whose relationship among nodes keep constantly
evolving. The existing multi-view classification algorithms cannot
capture the evolving information well since the smoothness of
time-varying data is neglected. Therefore, we consider the con-
tinuity of time, innovatively combine T dynamic networks with
smooth weights in a unified model:

min
F,w

µ Tr(F⊺L(t
′)F) +

T∑
t=1,t ̸=t ′

w(t)Tr(F⊺L(t)F)

+α∥F − Y∥
2
fro + β∥Dw∥1,

s.t. w⊺1 = 1,w ≥ 0,

(3)

where µ, α and β are trade-off parameters, and we highlight the
target view (i.e. the t ′th view) with the first term. The model is
expected to automatically identify those views relevant to the
target view by assigning them higher weight w(t) than other
irrelevant views. In real-life applications, we generally set the
latest view as target. To leverage the rest views as auxiliary, we
are inspired by label propagation and linearly combine their local
smooth graph structures in the second term. The weight of this
combination is defined by w ∈ RT−1. As aforementioned, for
the sake of data consecutiveness, total variation regularization is
introduced as the last term, in which the time dimension factor
is constrained to be smooth and sparse, and therefore gaining a
better generalization of the model. In details, D ∈ R(T−2)×(T−1) is
a first-order differential matrix where Di,i = 1 and Di,i+1 = −1
for i = 1, 2, . . . , T − 2 and other entries are zeros:

∥Dw∥1 =

T−2∑
i=1

|wi − wi+1|. (4)

Algorithm 1 Iterative solution for label indicator

Input:
Laplacian matrix L′, initial indicator F0, semi-supervised label
Y, parameter α.

Output:
Optimal label indicator F.

1: Update F by:

Ft+1
=

1
1 + α

(I − L′)Ft +
α

1 + α
Y;

2: Let t = t + 1, repeat step 1 until convergence.

We utilize the total variation regularization to constrain the
time dimension factor to obtain a smooth but sparse weight
and gain better generalization of our model. With a smooth
combination of views, Eq. (3) keeps a reasonable view-agreement
assumption by sharing one label indicator F. This assumption
held by much multi-view learning literature is that all the views
should share a similar underlying clustering structure. We will
optimize this model in the next sub-section.

3.3. Optimization

Recall that Eq. (3) is convex respecting to each variable. There-
fore, an iterative optimization approach is needful to solve it. We
choose an effective solving framework ADMM and introduce an
auxiliary variable z = Dw, then we consider the optimization as
follows:

min
F,w

µ Tr(F⊺L(t
′)F) +

T∑
t=1,t ̸=t ′

w(t)Tr(F⊺L(t)F)

+α∥F − Y∥
2
fro + β∥z∥1,

s.t. w⊺1 = 1,w ≥ 0, z = Dw,

(5)

whose solution for (w, F) coincides with the solution of Eq. (3).
Though a new constraint is introduced together, it will be solved
effective shortly. To achieve this, we construct the augmented
Lagrangian function as follow:

min
F,w,z

µ Tr(F⊺L(t
′)F) +

T∑
t=1,t ̸=t ′

w(t)Tr(F⊺L(t)F)

+α∥F − Y∥
2
fro + β∥z∥1

+λ⊺(Dw − z) +
ρ

2
∥Dw − z∥2

2,

s.t. w⊺1 = 1,w ≥ 0,

(6)

where λ is the Lagrangian multiplier and ρ is a hyper-parameter
(i.e. the learning rate). To solve the problem given by Eq. (6),
we alternately minimize the objective function with respect to
F,w and z. Noteworthy, since each sub-problem is convex, the
existence of global optimal in each iteration is guaranteed.

By fixing w and z, an analytical solution of the F sub-problem
is obtained as:

F = α(αI + L′)−1Y, (7)

where L′
= µL(t ′) +

∑T
t=1,t ̸=t ′ w

(t)L(t). And furthermore, the
computational complexity can be reduced by using an iterative
approach discussed in [15], as shown in Algorithm 1.

For the w sub-problem, it becomes a Quadratic Programming
(QP) with other irrelevant terms omitted. There are lots of meth-
ods [42,43] to solve QP, and we will not discuss them here. To be
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Algorithm 2 Optimization for MSCD
Input:

Laplacian matrices {L(t)}Tt=1, known label Y,
parameters α, β , and µ, learning rate ρ

Output:
Label indicator F and views weight w.

1: Initialize F and w;
2: Update F by solving Eq. (7) with Algorithm 1;
3: Update w by solving Eq. (8);
4: Update z according to Eq. (10);
5: Update Lagrangian multiplier according to Eq. (12);
6: Repeat steps 2–5 until convergence.

clear, we rewrite the sub-problem in an obvious QP form:

min
w

ρ

2
w⊺D⊺Dw + ⟨V + λ⊺D − ρz⊺D,w⟩,

s.t. w⊺1 = 1,w ≥ 0,
(8)

where V = (tr(F⊺L(1)F), . . . , tr(F⊺L(T )F))⊺ but excludes t ′th term
(the target view).

The z sub-problem contains an ℓ1-norm, therefore, we can-
not easily obtain the derivative respecting to z. We have the
optimization problem as following:

min
z

β∥z∥1 + λ⊺(Dw − z) +
ρ

2
∥Dw − z∥2

2. (9)

The closed form solution is given by:

z :=
1
ρ
T (λ + Dw, β), (10)

where T (ν, η) is soft-shrinkage operator [44] acting on each
element of the given vector, whose main idea is keeping ∂(|zi|)
indeterminate and discussing it on three cases of the sign of zi. It
is given by:

T (ν, η) = sign(ν)max{(|ν| − η), 0}. (11)

Finally, the Lagrangian multiplier λ is updated as:

λ := λ + ρ(Dw − z). (12)

The multiplier λ accumulates the error of the subtraction (with
learning rate ρ), which encourages to satisfy the constraint iter-
atively, that is to achieve the mission of the auxiliary variable.

In practice, we could easily check the variation of each variable
at new iteration to prove the convergence. In particular, we
further define rk = ∥Dw − z∥2 and sk = ρD⊺(zk − zk−1) at
the kth iteration to see whether they are both small enough
for the convergence checking. We summarize this process in
Algorithm 2.

3.4. Time complexity

Here we provide a brief complexity analysis for Algorithm
2. For the F sub-problem, we utilize an iterative algorithm to
deal with the inverse operation, which reduces the complexity
to O(n2k) under the settings of n samples and k classes. For the
w sub-problem, solving a QP brings an O(T 3L) complexity, where
T ≪ n denotes the number of views, and L is the length of a
binary coding of w [45]. For the z sub-problem, the time cost
only lies on matrix multiplication, therefore, the time complexity
is O((T − 1)(T − 2)) = O(T 2). Assume that Algorithm 2 requires
t iterations for convergence, then its overall time complexity is
of order O(t(n2k + T 3L + T 2)). Apparently, the proposed learning
algorithm is efficient to optimize the objective function.

4. Experimental result

In this section, we evaluate our approach on some synthetic
and real-world datasets. Here we raise four related approaches
to compare with:

• Single-view Semi-supervised Classification (SSC) [41]. This
approach is an extension of spectral clustering and spread
the information from labeled nodes to their neighbors. This
approach is often used as an illustration to examine whether
multi-view can enhance classification performance. In a
real-world scenario, it is random to have an observation of
dynamic networks. Therefore, this approach may suffer a lot
from noise and misleading information.

• Optimized Multiple Graph-based Semi-Supervised Learning
(OMG-SSL) [15]. This approach could leverage multi-graph
information but has a hyper-parameter representing the
significance of each view. The parameter needs to be tuned
manually for every view. The optimization is done by using
an EM-style iterative algorithm, which updates the label
indicator and views weight alternately.

• Sparse Multiple Graph Integration(SMGI) [14]. This approach
combines the structural information of the views, and as-
sume they share one label indicator equally. Especially, this
approach aims to obtain a sparse weight of the views, which
assumes that only a few views are needed to reconstruct the
complete structural information.

• Semi-supervised Time Series Classification (STSC) [46]. This
approach aims to address the SSL of time-series and train
a classifier with labeled nodes based on Euclidean distance.
Then it uses the classifier to label the rest nodes. This pro-
cedure is efficient but needs a sufficient amount of labeled
instances to train a better classifier. We will only report the
experimental result of STSC on the final experiment, which
is testing on time-series datasets.

Next, we evaluate the above approaches and ours under three
different datasets. The parameters of each approach are tuned for
optimal performance following their literature or multiple tests.
For the single-view methods, we perform them overall views and
report the average results. For every approach, several label rates
are tested for ten runs each, and the average performances are
reported. We should note that, in transductive learning, the label
rates are generally low. Therefore, we perform these experiments
at four levels of label rate: 1%, 3%, 5%, and 10%. Meanwhile, for
the sake of unbiased comparison, we repeat ten runs for each
experiment to reduce the bias of randomly choosing initial label
nodes.

4.1. Synthetic dataset experiment

We first generate three synthetic datasets with a simulating
algorithm [47], which could generate simple dynamic networks
based on stochastic block models. This algorithm simulates sev-
eral dynamic communities, and the nodes of them will move
from one community to another over time with some presup-
posed pattern. Then, it constructs the communities as undirected,
unweighted graphs, that nodes inside the same community are
linked with a probability pin, and linked with a probability pout to
nodes of other communities. Based on this algorithm, we gener-
ated three datasets with three patterns, as shown in Fig. 2. The
pattern of Fig. 2(a) is grow-shrink, whose nodes will move from
one community to another over time, and leading to the size of
communities changing. Fig. 2(b) is merge-split, the communities
are alternately merging and splitting. The generating parameters
of it are the same as above. Fig. 2(c) is mixed, which contains four
communities, and half instances follow the behavior pattern of
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Fig. 2. Visualization of synthetic datasets. The x-axis represents the snapshots of time-varying networks along the time. The colors represent classes of instances.
According to different behavior patterns, instances change their classes over time. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Table 1
Performance comparison on synthetic datasets. The results are the average accuracy rate (and standard derivation)
over 10 runs.
Dataset Label Rate SSC OMG-SSL SMGI MSCD

Grow

1% 0.5188(0.0099) 0.5580(0.0315) 0.5495(0.0300) 0.6145(0.0335)
3% 0.5621(0.0131) 0.5638(0.0206) 0.5603(0.0171) 0.6308(0.0272)
5% 0.5984(0.0164) 0.6065(0.0318) 0.5908(0.0247) 0.6625(0.0263)
10% 0.6606(0.0112) 0.6630(0.0233) 0.6500(0.0217) 0.7260(0.0173)

Merge

1% 0.5124(0.0081) 0.5205(0.0123) 0.5210(0.0172) 0.5863(0.0344)
3% 0.5435(0.0177) 0.5445(0.0193) 0.5397(0.0175) 0.6125(0.0236)
5% 0.5794(0.0296) 0.5880(0.0324) 0.5775(0.0317) 0.6565(0.0186)
10% 0.6114(0.0244) 0.6263(0.0243) 0.6470(0.0294) 0.7165(0.0283)

Mixed

1% 0.4190(0.0258) 0.4143(0.0251) 0.4096(0.0266) 0.4578(0.0203)
3% 0.4843(0.0156) 0.4688(0.0185) 0.4594(0.0170) 0.5656(0.0162)
5% 0.5262(0.0146) 0.5039(0.0149) 0.4961(0.0142) 0.6190(0.0281)
10% 0.6095(0.0111) 0.6040(0.0169) 0.5941(0.0164) 0.7040(0.0164)

grow-shrink, while others follow the pattern of merge-split. Each
dataset contains 100 views and 200 instances per class. During
the experiment, we set the last view as target view and set the
label rate at four different levels: 1%, 3%, 5%, and 10%.

As we can see in Table 1, all of the multi-view approaches
outperform the single-view SSC, which indicates that the role of
cross-view relationship in enhancing the accuracy of classification
results. Besides, by fitting well with the characteristics of dynamic
networks, MSCD obtains a sparse and smooth weight (as shown
in Fig. 3) and outperforms other multi-view approaches. Further-
more, as the label rate grows, the performance of MSCD increases
sharply as well. Paying attention to the weight, we can see SMGI
produces a sparse solution with more than half of the weights
are assigned to 0. OMG-SSL can map out trends in time, but
the weights are too dense to ignore misleading information. We
should note that the total variation term of MSCD constrains the
weight to be locally smooth and globally sparse, which could fit
the involving pattern of dynamic networks (as shown in Fig. 2(a)),
and assign the relative views higher weights than other irrelative
ones.

4.2. Daily and sports activities dataset experiment

In this section, we employ a real-world dataset named Daily
and Sports Activities Dataset [48]. This dataset contains records
of human activities, which are recorded by motion sensors on
eight subjects. Each record has 45 dimensions representing 45
sensors on one subject and has 5-min length. Sensor units are
calibrated to acquire data at 25 Hz sampling frequency. The 5-min
signals are divided into 5-s segments so that 480 (= 60×8) signal
segments are obtained for each activity. We should note that the
subjects are asked to perform the activities in their style and
were not restricted to how the activities should be performed.
By treating signal segments as nodes, we can construct 125 (=

25 Hz × 5-s) dynamic networks, which represent the action
process of activities.

In the experiment, we split the 19 activities into three groups
and construct three sets of time-varying networks (shown in
Fig. 4). Each group contains 6 or 7 classes, and we randomly select
200 records from each and calculate their similarity with Eu-
clidean measurement. As aforementioned, we preserve 25 time-
varying networks from 125 ones by taking one every five, which
enlarges the information gap between adjacency networks. We
note that static-motion activities are easily distinguishable; on
the contrary, it is hard to see the patterns at first glance among
dynamic-motion activities.

With similar settings, the results are reported in Table 2. Con-
cretely, for multi-view approaches, label prediction and network
weighting are conducted in a unified framework. As we can see,
MSCD outperforms other methods, even if the label rate is too
low to handle (i.e., dataset 7–12). Under the datasets of multiple
classes and dynamic networks, MSCD can utilize smoothness to
find an appropriate weights allocation, as shown in Fig. 5.

4.3. Time series data experiment

In this section, we further test methods on several time-series
datasets [49]. Some of them are recorded by sensors (such as ECG
recode). And some are serialized from images of an object (such
as handwritten fonts, people practicing yoga, etc.) and stored in
structural order. We split each sequence into T sub-segments
(typical length is 10–20) and construct T dynamic networks. We
obtain the tth network G(t) by treating the tth sub-segments of
all sequences as nodes and calculate the weight of edges with the
Euclidean distance measurement. It is noteworthy that {G(t)

}
T
t=1 is

still arranged in chronological or structural order. We construct
networks on three time-series datasets [49]: (1) ECGFiveDays,
which contains 884 instances, 2 classes, and 10 networks (views),
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Fig. 3. The average weights distribution obtained by three methods among 10 runs on grow-shrink datasets, and the label rates were set to 10%. The target view
is the last one, therefore, other views similar to it should obtain higher weights.

Fig. 4. Average similarity matrices of three subsets constructed from Daily and Sports Activities Dataset. Lighter points represent higher similarity.

Fig. 5. The average weights distribution obtained by MSCD among 10 runs on Daily and Sports Activities Datasets, and the label rates were set to 10%. The weights
are locally smooth and globally sparse.

Table 2
Performance comparison on daily and sports activities datasets. The results are the average accuracy rate (and
standard derivation) over 10 runs.
Dataset Label Rate SSC OMG-SSL SMGI MSCD

1–6

1% 0.6727(0.0119) 0.6702(0.0005) 0.6730(0.0053) 0.7107(0.0277)
3% 0.6805(0.0096) 0.6767(0.0000) 0.6777(0.0014) 0.7145(0.0095)
5% 0.6851(0.0039) 0.6833(0.0000) 0.6841(0.0009) 0.7217(0.0019)
10% 0.7032(0.0020) 0.7000(0.0000) 0.7003(0.0005) 0.7361(0.0014)

7–12

1% 0.2065(0.0042) 0.1750(0.0000) 0.1753(0.0005) 0.2631(0.0222)
3% 0.2033(0.0030) 0.1917(0.0000) 0.1918(0.0002) 0.2418(0.0250)
5% 0.2135(0.0014) 0.2083(0.0000) 0.2083(0.0000) 0.2689(0.0115)
10% 0.2519(0.0006) 0.2500(0.0000) 0.2500(0.0000) 0.3018(0.0117)

13–19

1% 0.4026(0.0080) 0.5311(0.0633) 0.6529(0.0471) 0.6584(0.0394)
3% 0.4229(0.0138) 0.4966(0.0623) 0.6981(0.0197) 0.6981(0.0203)
5% 0.4388(0.0109) 0.5133(0.0382) 0.7113(0.0161) 0.7149(0.0147)
10% 0.4731(0.0105) 0.5419(0.0361) 0.7311(0.0117) 0.7312(0.0111)

(2) Yoga, which contains 3300 instances, 2 classes, and 15 net-
works, and (3) ECG5000, which contains 5000 instances, 5 classes,
and 10 networks.

In this task, we also perform the time-series-based method
STSC on binary classification datasets. During the experiment, we
will perform it on each network (as the pre-calculated distance

matrix), and report the average performance. The settings for
other methods are the same as before.

The mean accuracy and standard of 10 times repeated experi-
ments under each label rate are shown in Table 3. STSC can only
process binary classification tasks, hence that we report no result
about it on multiple classes dataset. We should note that MSCD
results in better performance with low label rates (1% and 3%).
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Table 3
Performance comparison on time series datasets. The results are the average accuracy rate (and standard derivation)
over 10 runs.
Dataset Label Rate SSC OMG-SSL SMGI STSC MSCD

ECGFiveDay

1% 0.5905(0.0264) 0.6699(0.0812) 0.6749(0.0799) 0.4714(0.0319) 0.7982(0.0395)
3% 0.6180(0.0159) 0.7672(0.0701) 0.7854(0.0611) 0.5033(0.0319) 0.8295(0.0518)
5% 0.6247(0.0209) 0.7905(0.0555) 0.8202(0.0370) 0.5082(0.0319) 0.8442(0.0630)
10% 0.6514(0.0147) 0.8439(0.0583) 0.8828(0.0452) 0.5362(0.0319) 0.8644(0.0252)

Yoga

1% 0.5200(0.0297) 0.5168(0.0181) 0.5191(0.0184) 0.5253(0.0202) 0.5361(0.0183)
3% 0.5450(0.0262) 0.5450(0.0391) 0.5452(0.0372) 0.5294(0.0183) 0.5551(0.0394)
5% 0.5579(0.0254) 0.5939(0.0252) 0.6005(0.0476) 0.5370(0.0144) 0.5825(0.0297)
10% 0.5222(0.0295) 0.5967(0.0403) 0.6126(0.0381) 0.5253(0.0202) 0.6077(0.0379)

ECG5000

1% 0.5882(0.0000) 0.7612(0.1706) 0.7428(0.1644) – 0.7615(0.1706)
3% 0.5966(0.0000) 0.8344(0.1747) 0.8208(0.1537) – 0.8360(0.1648)
5% 0.6050(0.0000) 0.8473(0.1202) 0.8517(0.0768) – 0.8528(0.0838)
10% 0.6258(0.0000) 0.8473(0.1202) 0.8517(0.0768) – 0.9132(0.0066)

Fig. 6. The average weights distribution obtained by MSCD among 10 runs on three time series datasets, and the label rates were set to 10%. It is possible to obtain
smooth but sparse weights.

Fig. 7. The results of convergence rate and parameter sensitivity experiment.

Meanwhile, the performances of other methods increase with
the incrementation of label rates. In Fig. 6, we report the weight
distribution of MSCD results for each dataset. In general, MSCD
can combine the information of multiple dynamic networks and
obtain an optimal weight ratio according to the time smoothness.

4.4. Convergence rate and parameter sensitivity experiment

In this section, we further investigate how fast the optimiza-
tion of MSCD would converge. We perform MSCD on the synthetic
dataset growwith 10% label rate. To verify the convergence speed,
we fixed the parameters to an optimal combination, and show
the curves of converging rates in Fig. 7(a). In particular, these
curves are normalized, and the 0th iteration is initialization. We
can find out that MSCD can achieve fast convergence within a
few iterations. The tendencies of rk and sk are identical to the
objective function. Therefore, we can use these two variables to
verify convergence and reduce computational consumption.

To evaluate the sensitivity of the parameters, µ, α and β
are tuned in the range of {10−4, 10−3, . . . , 1, 101, . . . , 104

}. We

report the performance results in Fig. 7(b), which indicates that
the optimal ranges of parameters are board, and the parameters
tuning in real-world applications could be an easy job.

5. Conclusion

Nodes classification of dynamic networks remains a chal-
lenging problem. We find out the complementary relationships
among multiple observations of a dynamic network at different
epochs, and propose a multi-view learning approach to leverage
it, i.e., Multi-view Semi-supervised learning for Classification on
Dynamic networks (MSCD). To fit the smoothness of continuous
observations, we introduce the total variation regularization to
ensure. Furthermore, we apply the ADMM framework to de-
compose the model into several sub-problem, both of which are
easy to implement. Extensive experimental results demonstrate
that under low label rates, our model can classify nodes more
accurately than the baseline methods.
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